NRF1 Alleviated Oxidative Stress of Glioblastoma Cells by Regulating NOR1

(GBM / NOR1 / NRF1 / oxidative stress)

JIALI WANG¹, SHUAI CHEN², WANG XIANG³, QING ZHU⁴, NIANJUN REN²

¹Department of Colon and Rectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
²Department of Neurosurgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
³Radiologic Diagnosis Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
⁴Department of Pharmacy, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China

Abstract. Oxidored-nitro domain-containing protein 1 (NOR1) is a critical tumour suppressor gene, though its regulatory mechanism in oxidative stress of glioblastoma (GBM) remains unclear. Hence, further study is needed to unravel the function of NOR1 in the progression of oxidative stress in GBM. In this study, we evaluated the expression of NOR1 and nuclear respiratory factor 1 (NRF1) in GBM tissue and normal brain tissue (NBT) using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB), and investigated their relationship. We then induced oxidative stress in U251 cells through H₂O₂ treatment and conducted Cell Counting Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration.

Introduction

Glioblastoma (GBM) is an aggressive malignant brain tumour of the central nervous system, classified as grade IV astrocytoma (McNamara et al., 2022). The current treatment options for GBM include surgery, radiotherapy, drug therapy (typically chemotherapy combined with temozolomide), and immunotherapies (Asija et al., 2022; Rong et al., 2022; Yuan et al., 2022). Despite significant efforts to develop optimal treatment strategies, GBM patients have a very poor prognosis, with high mortality rates and a median overall survival of only about 15 months (Grochans et al., 2022). Therefore, it is crucial to explore innovative treatment approaches that can improve the prognosis of GBM patients.

Reactive oxygen species (ROS) accumulation, which causes oxidative stress, is a risk factor for the emergence of various diseases. ROS are produced in normal physiological conditions, but excessive ROS can cause oxidative stress, which can lead to cell damage and death. Therefore, it is important to explore the regulation of ROS and find effective ways to prevent and treat oxidative stress-related diseases.

The aim of this study was to investigate the expression of NOR1 and NRF1 in GBM tissue and normal brain tissue, and to explore the relationship between the two proteins in oxidative stress. We induced oxidative stress in U251 cells through H₂O₂ treatment and conducted Cell Counting Kit-8, Transwell and wound healing assays to analyse cell proliferation, invasion and migration.
of GBM (Olivier et al., 2020; Ostrowski and Pucko, 2022). Nuclear respiratory factor 1 (NRF1) is a crucial transcription factor that controls antioxidant defence and is essential for keeping cellular redox homeostasis, preventing oxidative damage and reducing inflammation (Bugno et al., 2015; Zhang and Xiang, 2016). It has been reported that NRF1 is a potential therapeutic target for preventing and treating cancer, neurodegenerative diseases and other disorders (Northrop et al., 2020; Ruvkun and Lehrbach, 2023). Over-expression of NRF1 could up-regulate the expression of ROS scavenging enzymes, allowing tumour cells to maintain low ROS levels, thereby promoting the epithelial mesenchymal transition of breast cancer cells (Sun et al., 2023).

Oxidore-nitro domain-containing protein 1 (NOR1) is a gene expression regulator located in the nucleus with selective tissue-specific expression. It plays a crucial role in various pathological processes such as cancer, inflammatory diseases and Parkinson’s disease (Herring et al., 2019). Studies have shown that oxidative stress could induce NOR1 protein expression by activating NRF1 and heat shock factor 1 (HSF1) transcription factors, and NRF1 and HSF1 may participate in the incidence and growth of cancers linked to oxidative stress through the regulation of NOR1 (Li et al., 2011).

This work aims to confirm, through clinical samples and cellular investigations, the relationship between NRF1 and NOR1 with regard to oxidative stress in GBM. The goal is to establish a theoretical foundation for developing antioxidant medications targeting NOR1.

Material and Methods

Tissue samples

Between January 2020 and September 2020, ten specimens of GBM tissue, as well as their adjacent normal brain tissue (NBT), were collected from Hunan Cancer Hospital in accordance with the National Regulation of Clinical Samples in China.

Cell culture and treatment

The human HEB, T98G, U87 and U251 cell lines were obtained from BNCC (Beijing, China) and cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, St. Louis, MO) supplemented with 10% foetal bovine serum (FBS) and 1% penicillin-streptomycin solution in a humid environment at 37 °C containing 5 % CO₂. Once the cells reached 80–90 % confluence, they were sub-cultured. To induce oxidative stress, U251 cells were treated with various doses of H₂O₂ (0, 50, 100, 150, 200, and 250 μM) for 24 hours, and 100 μM was determined to be the optimal concentration for subsequent experiments. The cells were divided into five groups: Control group (no treatment), Model group (treated with 100 μM H₂O₂ for 24 hours), oe-NC+si-NC group (treated with 100 μM H₂O₂ for 24 hours and transfected with empty plasmid for 48 hours), oe-NRF1 group (treated with 100 μM H₂O₂ for 24 hours and transfected with oe-NRF1 plasmid for 48 hours), and oe-NRF1+si-NOR1 group (treated with 100 μM H₂O₂ for 24 hours and transfected with oe-NRF1 plasmid and si-NOR1 plasmid for 48 hours).

Cell transfection

Cells were transfected with plasmid pcDNA3.1 NRF1 (HG-H0005011, HonorGene, Changsha, China) and siRNA NOR1 (HG-Si173200, HonorGene) using Lipofectamine 2000 (11668019, Invitrogen, Waltham, MA) according to the manufacturer’s instructions, with oe-NC and si-NC serving as the controls. The normal culture medium was changed for continued culture after 6 h of transfection, and relevant detection was carried out 48 hours later.

Quantitative real-time polymerase chain reaction (qRT-PCR)

TRizol reagent (V900483, Sigma) was used to extract total cellular RNA. The concentration (absorbance at 260 nm) and purity (absorbance ratio 260/280) of RNA were measured using a NanoDrop instrument (Thermo Scientific, Waltham, MA). The RNA was used as a template reverse transcribed to cDNA using the mRNA reverse transcription kit (CW2569, CWBIO, Beijing, China). UltraSYBR Mixture (CW2601, CWBIO) was shown in PCR utilizing a fluorescence quantitative PCR instrument (PIKOREAL96, Thermo). The 2^–ΔΔCt technique was employed to determine the relative expression of NOR1 and NRF1 with β-actin as an internal control. All primers were designed with Primer-BLAST online and obtained by Tsingke Biotechnology. Primer sequences of target genes are shown in Table 1.

Cell Counting Kit-8 (CCK-8)

The CCK-8 method was used to assess cell proliferation (NU679, Dojindo, Kumamoto, Japan). Approximately 5 × 10^4 cells were seeded per well in a 96-well plate (0030730119, Eppendorf, Hamburg, Germany), with each group having three replicates. After 24 hours of cell growth, 30 μl of CCK-8 solution was added to each well and incubated for 4 hours at 37 °C. The absorbance at 450 nm was then tested using a Bio-Tek microplate instrument (PIKOREAL96, Thermo). The 2^–ΔΔCt technique was used to evaluate cell viability.

Table 1. Primer sequences

| Gene | Primer sequences Length |
|----------|-------------------------|----------------|
| β-actin | F: ACCCTGAAGTACCCCATCGAG 224 bp |
| | R: AGCACAGCCTTGAGATACAC |
| NOR1 | F: CTTTGCAACGCTGACGGTG 244 bp |
| | R: AGAGCCTGCCCAATCTGC |
| NRF1 | F: TCCCTGGTCCAGAACCTTTACACA 124 bp |
| | R: ATTTGGCGTCTCCGTGGTCC |
Transwell assay

The trypsin-digesting solution was used to digest the cells (AWC0232, Abiowell, Changsha, China). The cell density was set to approximately 2×10^5/ml, and the cells were placed in serum-free DMEM. A volume of 200 μl serum-free medium was added to the upper chamber of an 8 μm pore size Transwell plate (3428, Corning, Cambridge, MA), followed by 100 μl of cell suspension. The lower chamber was filled with a complete medium containing 10 % FBS. The cells on the upper side of the membrane were cultivated for 48 hours before being washed with phosphate-buffered saline (PBS). The cells that migrated to the lower chamber were dried with 0.1 % crystal violet (AWC0333, Abiowell) and treated with 4 % paraformaldehyde (N1012, NCM Biotech, Suzhou, China). An inverted microscope (DSZ2000X, Cnmicro, Beijing, China) was used to observe the cells. The staining was washed with acetic acid, and the absorbance was measured at 550 nm using a Bio-Tek microplate reader.

Wound healing assay

Once the cells reached the confluence of over 90 %, they were seeded into a 6-well culture plate. To eliminate any detached cells, the plate was gently scraped with a sterile plastic pipette tip and then rinsed with PBS. A single wound in the middle of the cell monolayer was created using a sterile pipette tip. The wound was then monitored and imaged at 0, 24, and 48 hours post-wounding. The degree of wound closure was calculated by measuring the percentage reduction in initial scratch area at each time point.

TUNEL staining

TUNEL analyses were performed with chamber slides containing U251 cells. After an overnight culture, the cells were washed with PBS three times and fixed in 4 % paraformaldehyde for 30 min. TUNEL assays were carried out using the TUNEL kit (40306ES50, Yeasen, Shanghai, China) as per the manufacturer’s instructions. Fluorescence microscopy (BA410T, Motic, Xiamen, China) was then used to observe cell apoptosis. To determine the quantity of TUNEL-positive cells, three fields were randomly selected.

Flow cytometry

The cells were harvested by centrifugation at $1,216 \times g$ for 5 min and then washed with PBS. Following that, the Annexin V-APC apoptosis detection kit (KGA1019, KeyGen BioTECH, Nanjing, China) was applied. Suspension cells were mixed with 500 μl of binding buffer and then combined with 5 μl of Annexin V-APC and 5 μl of propidium iodide. This mixture was left to incubate at 4 °C for 10 min in the dark. To identify cell apoptosis, flow cytometry (A00-1-11102, Beckman Coulter, Brea, CA) was applied.

Chromatin immunoprecipitation (ChIP) assay

Following instructions of the manufacturer, the ChIP experiment was completed using the CHIP kit (ab500, Abcam, Cambridge, UK). The cells were first cross-linked with 1.1 % formaldehyde for 10 min at room temperature and then quenched with glycine. The cells were then lysed using a buffer containing protease inhibitors, and the chromatin was broken using ultrasonic treatment. The sheared chromatin was incubated with either anti-NRF1 (ab175932, Abcam) or anti-Histone H3 (ab1791, Abcam) antibody after pre-clearing with Protein A agarose beads for 1 h. The mixture was rotated overnight at 4 °C. DNA purification was performed as recommended by the manufacturer. The JASPAR transcription factor binding profile database was utilized to find the anticipated NRF1 binding locations. Real-time PCR with SYBR green was conducted to confirm the NRF1 promoter-specific regions using the primer sets shown in Table 2. The Assay Site IP Fold Enrichment above the sample-specific background (linear conver-

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR1-ChIP1</td>
<td>F CGCCCGAGACCCGGCTAAA</td>
<td>143 bp</td>
</tr>
<tr>
<td>R CGCCCCCTTCCCATCACAACGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1-ChIP2</td>
<td>F GGGAGGAGGAAATGATTTGC</td>
<td>201 bp</td>
</tr>
<tr>
<td>R AAGTGAGCCAGCCGAGA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1-ChIP3</td>
<td>F GGGAGGAGGAAATGATTTGC</td>
<td>225 bp</td>
</tr>
<tr>
<td>R TTACTGGGTGCGGTGTTTCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1-ChIP4</td>
<td>F TGTGAAAACACGCAACCGATA</td>
<td>187 bp</td>
</tr>
<tr>
<td>R CAGCTTCTGACCCAGCAGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1-ChIP5</td>
<td>F CTGCGCGAGCCCTCCTCTT</td>
<td>120 bp</td>
</tr>
<tr>
<td>R CCGGTGGAGTAGAATTGAGAGGAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOR1-ChIP6</td>
<td>F CGGGCGAGTTTCTCATGTG</td>
<td>180 bp</td>
</tr>
<tr>
<td>R ATAGAGTGCGCTGGAATGCGAGA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sion of the first ΔΔCt) was calculated by the kit using the following equation: Fold Enrichment = 2\(^{-\Delta\Delta Ct} \) (Sun et al., 2018; Pla-Martín et al., 2020).

Western blot (WB)

The experimental procedures were conducted as previously described (Xu et al., 2012). A protease inhibitor (583794, Genthold, Beijing, China) was added to buffer RIPA (AWB0136, Abiowell) before U251 cells were lysed. The bicinchorinic acid (BCA) method was used to measure protein concentrations. Equal amounts of protein (20 μg/lane) were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to polyvinylidene difluoride (PVDF) membranes. Membranes were incubated with primary antibodies overnight at 4 °C after being blocked with 5 % (w/v) non-fat dry milk for 90 min. The primary antibodies used were NOR1 (ab259939, 1 : 1000, Abcam), NRF1 (66832-1-Ig, 1 : 5000, Proteintech, Rosemont, IL) and β-actin (66009-1-Ig, 1 : 5000, Proteintech). After washing the membranes with PBS with Tween (PBST) three times, they were incubated with secondary antibodies provided by Proteintech, including HRP goat anti-mouse IgG (SA00001-1, 1 : 5000) and HRP goat anti-rabbit IgG (SA00001-1, 1 : 6000), for 1 h. Then, the antibody complexes were detected by the electrochemiluminescence (ECL) method. After washing the PVDF membrane five times with PBST, enhanced chemiluminescence ECL reagent (AWB0005, Abiowell) was added and the membrane was subjected to X-ray film for signal detection.

Biochemical assays

For biochemical determination, the first step was to re-suspend the cells in pre-cooled PBS. After undergoing ultrasound treatment, the supernatant was used as the sample for detection. The Nanjing Jiancheng Institute of Biological Engineering supplied the ROS test kit (E004-1-1), superoxide dismutase (SOD) assay kit (A001-3-2), and catalase (CAT) assay kit (A007-1-1).

Statistical analysis

We conducted at least three replicates for all aforementioned tests. Using the statistical software GraphPad Prism 8.0, we analysed the outcomes and expressed measurement data as mean ± standard deviation. Our analysis involved the use of Student’s t-test and one-way analysis of variance (ANOVA) to compare two or more groups. Moreover, the correlation analysis was employed to evaluate the relationship between NRF1 and NOR1. Our results indicated a significant difference at P < 0.05.

Results

Low expression of NOR1 and NRF1 in GBM

qRT-PCR analysis was conducted to assess the expression of NRF1 and NOR1 in both NBT and GBM tissues. The results showed a considerable decrease in the levels of NOR1 and NRF1 expression in GBM tissues as compared to those in NBT tissues (Fig. 1A). The study also investigated the correlation between NOR1 and NRF1 expression levels and discovered a positive correlation between them (Fig. 1B). In addition, WB results showed low expression of NOR1 and NRF1 in GBM tissues, which was consistent with the results of qRT-PCR (Fig. 1C). Furthermore, the study evaluated the expression level of NOR1 in HEB, T98G, U87 and U251 cell lines using qRT-PCR. The results indicated that the expression level of NOR1 in T98G, U87 and U251 cell lines was significantly lower compared to that observed in the HEB cell line, with the lowest expression level being in the U251 cell line (Fig. 1D). As a result, the U251 cell line was chosen for subsequent experiments.

Construction of H2O2-induced oxidative stress model in vitro

Then, U251 cells were treated with H2O2 to construct an H2O2-induced oxidative stress model in vitro. CCK-8 analysis revealed that there was no significant change in cell proliferation at H2O2 concentrations of 50–100 μM compared to the Control group, but there was a significant decrease in proliferation at concentrations of 150–250 μM (Fig. 2A). Therefore, a concentration of 100 μM was chosen for subsequent experiments. TUNEL staining showed that the rate of cell apoptosis did not differ significantly between the Control group and the Model group (Fig. 2B). The level of ROS and the activities of SOD and CAT were detected using specific kits, revealing a significant reduction in the activities of SOD and CAT in the Model group along with an increase in the ROS level (Fig. 2C–E). Furthermore, qRT-PCR data indicated that NOR1 and NRF1 expression levels in cells were significantly reduced after H2O2 treatment (Fig. 2F).

NRF1 was a novel NOR1-binding partner

The NOR1 promoter possessed six potential NRF1-binding sites, which we discovered using transcription factor binding database Jaspar (Table 2). To confirm whether NRF1 directly interacts with these predicted binding sites, we performed ChIP analysis. After ultrasonication, we observed that the molecular weights of DNA fragments were concentrated within the 100–250 bp range (Fig. 3A). We then used a rabbit polyclonal anti-NRF1 antibody (IP) or normal rabbit IgG (IgG) to investigate NRF1 binding at specific locations within the NOR1 promoter region. We focused on six locations, ranging from -143 kb to -225 kb from the promoter region. Among these, only NOR1-ChIP2, NOR1-ChIP3 and NOR1-ChIP6 exhibited NRF1 binding with a Fold Enrichment greater than 1, as indicated by the ChIP analysis (Fig. 3B). The findings suggest that only these three sites directly interact with NRF1.
Vol. 69

Fig. 1. Low expression of NOR1 and NRF1 in GBM
(A) Assessment of NOR1 and NRF1 expression in NBT and GBM tissues by qRT-PCR. (B) Correlation between the expression levels of NRF1 and NOR1. (C) Detection of the protein expression of NOR1 and NRF1 by WB. *P < 0.05 vs the NBT tissue. (D) Assessment of NOR1 expression in HEB, T98G, U87 and U251 cell lines by qRT-PCR. *P < 0.05 vs the HEB cell line.

Knockdown of NOR1 could alleviate the antioxidative stress effect of NRF1 on U251 cells

To further investigate the effects and regulatory mechanisms of NRF1 and NOR1 on H\(_2\)O\(_2\)-induced U251 cells, we performed experiments with over-expression of NRF1 and knockdown of NOR1. Results from qRT-PCR and WB tests showed that the expression levels of NRF1 and NOR1 in the oe-NRF1 group were significantly elevated compared to those in the oe-NC+si-NC group. Notably, the expression level of NRF1 in the oe-NRF1+si-NOR1 group increased, while the expression level of NOR1 did not exhibit significant changes (Fig. 4A and B). In the CCK-8 experiment, we observed that the cell proliferation ability in the Model group decreased significantly compared to the Control group, while the oe-NRF1 group showed a significant increase in cell proliferation ability compared to the oe-NC+si-NC group.
Fig. 2. Construction of H₂O₂-induced oxidative stress model in vitro
(A) CCK-8 assay was applied to detect cell proliferation. (B) Representative images and value of apoptosis in the Control and Model groups were assessed by TUNEL assay. Scale bar = 100 μm. (C–E) To test the levels of SOD, CAT and ROS, the biochemical assay kit was applied. (F) The expression levels of NOR1 and NRF1 in U251 cells were detected by qRT-PCR. *P < 0.05 vs the Control group.

Fig. 3. NRF1 was a novel NOR1-binding partner.
(A) Size distribution of DNA fragments after cell cross-linking by ultrasound. (B) Transcriptional factor NRF1 was confirmed to bind promoters NOR1-2, NOR1-3, and NOR1-6.
However, further knockdown of NOR1 impaired the promoting effect of oe-NRF1 on the cell proliferation (Fig. 4C). The wound healing experiment results showed that the scratch width of the Model group was significantly increased compared to the Control group, while the oe-NRF1 group had a significantly smaller scratch width than the oe-NC+si-NC group. However, the outcome caused by oe-NRF1 was reversed by further knockdown of NOR1 (Fig. 4D). In the Transwell cell invasion experiment, the number of cells passing through the Transwell chamber in the Model group was significantly lower than that in the Control group, and the number of cells in the oe-NRF1 group was higher than that in the oe-NC+si-NC group. Interestingly, the further knockdown of NOR1 reversed the effect of oe-NRF1 (Fig. 4E). Furthermore, ELISA results indicated that compared to the oe-NC+si-NC group, the levels of SOD and CAT in the oe-NRF1 group were increased, while the levels of ROS were reduced significantly. However, in the oe-NRF1+si-NOR1 group, we observed the opposite trend from the oe-NRF1 group (Fig. 4F–H). Overall, these results suggest that over-expression of NRF1 could alleviate the inhibitory effect of H$_2$O$_2$-induced oxidative stress on the proliferation, migration, and invasion of U251 cells, which might be reversed by knockdown of NOR1.

Fig. 4. Knockdown of NOR1 could alleviate the anti-oxidative stress effect of NRF1 on U251 cells. (A) The mRNA expression of NRF1 and NOR1 was evaluated by qRT-PCR. (B) WB was applied to measure the protein expression of NRF1 and NOR1. (C) CCK-8 assay of cell proliferation. (D) Scratch width value and representative images of migration were assessed by Transwell assay. Scale bar = 100 μm. (E) Representative images and cell numbers were detected by wound healing assay. Scale bar = 100 μm. (F–H) To test the levels of SOD, CAT and ROS, biochemical assays were applied. *P < 0.05 vs Control, &P < 0.05 vs oe-NC+si-NC, #P < 0.05 vs oe-NRF1.
GBM is a highly prevalent and deadly malignant neuroepithelial tumour of the adult central nervous system (Grochans et al., 2022; McNamara et al., 2022). Oxidative stress, which leads to changes in gene expression, cell proliferation and apoptosis, plays a critical role in the occurrence and development of tumours (Jelic et al., 2021). In the current research, we found that the expression of NOR1 and NRF1 was low in GBM, and their expression levels were positively correlated. Over-expression of NRF1 could alleviate the inhibitory effect of H$_2$O$_2$-induced oxidative stress on the proliferation, migration, and invasion of U251 cells, which might be reversed by knockdown of NOR1.

Oxidative stress damage is a major cause of cellular damage that results from the accumulation of ROS. ROS can cause oxidation of DNA, proteins and lipids, as well as damage to cellular organelles, which ultimately leads to tumorigenesis when the damaged cells accumulate to a certain level (Hayes et al., 2020; Kuo et al., 2022). In our study, we found that H$_2$O$_2$-induced oxidative stress inhibited proliferation, migration and invasion of U251 cells and promoted cell apoptosis, which was consistent with the results of Dalavaikodihalli et al. (2019). NRF1, a redox-sensitivity transcription factor, is vital for maintaining healthy redox homeostasis (Yuan et al., 2018; Zhang et al., 2020). Deletion of NRF1 function leads to a sharp increase in ROS and oxidative damage (Hu et al., 2022). Our study found that NRF1 was down-regulated in GBM at the mRNA level, which was further supported by the up-regulation of NRF1 and NOR1 protein expression in GBM tissue. In addition, we found that over-expression of NRF1 alleviated the inhibitory effects of H$_2$O$_2$-induced oxidative stress on cell proliferation, migration and invasion while increasing the activities of SOD and CAT.

NOR1 is a newly identified regulator involved in the oxidative stress response, linked to the emergence of oxidative stress-related tumours. It has been shown that there are binding sites for NRF1 and HSF1 on NOR1, and oxidative stress could induce NOR1 expression by activating the transcription of NRF1 and HSF1. A study by Li et al. (2011) investigated the impact of NOR1 on HNE1 cell viability in the presence of oxidative stress, finding that over-expression of NOR1 inhibited cell viability and promoted apoptosis. However, the role of NOR1 in oxidative stress in GBM has yet to be studied. In this study, we confirmed the binding of NRF1 to NOR1 by ChIP assay and constructed a NOR1 knockdown vector. Our results showed that interfering with NOR1 expression reduced the anti-oxidative stress effect of NRF1 on U251 cells. These findings provide insight into the regulatory mechanisms of NOR1 in the context of oxidative stress in GBM.

To summarize, the findings suggest that NRF1 could alleviate the effects of H$_2$O$_2$-induced oxidative stress in U251 cells by regulating NOR1 expression. This study highlights the potential of NOR1 as a promising therapeutic target for GBM treatment.

Conflict of interests
The authors declare that they have no competing interests.

Data availability statement
The data used to support the findings of this study are available from the corresponding author upon request.

Ethics approval and consent to participate
The study was approved by the Hunan Cancer Hospital Ethics Committee. The research was conducted according to the World Medical Association Declaration of Helsinki. All the information about the study will be fully explained to the subjects by the researchers. All the participants provided informed consent before sampling.

Author contributions
Jiali Wang and Qing Zhu made significant contributions to conceptualization, data curation, methodology, validation and writing of the original draft. Shuai Chen and Wang Xiang contributed to conceptualization, formal analysis, investigation, software, validation and writing of the original draft. Nianjun Ren contributed significantly to conceptualization, funding acquisition, project administration, supervision and review. All authors contributed to the article and approved the submitted version.

References

