Fol. Biol. 2023, 69, 116-126

https://doi.org/10.14712/fb2023069040116

Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis

Anton Tkachenko1, Ondřej Havránek1,2

1BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
21st Department of Medicine – Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic

Received December 2023
Accepted December 2023

References

1. Abed, M., Artunc, F., Alzoubi, K. et al. (2014) Suicidal erythrocyte death in end-stage renal disease. J. Mol. Med. (Berl.) 92, 871-879. <https://doi.org/10.1007/s00109-014-1151-4>
2. Aguilar-Dorado, I. C., Hernández, G., Quintanar-Escorza, M. A. et al. (2014) Eryptosis in lead-exposed workers. Toxicol. Appl. Pharmacol. 281, 195-202. <https://doi.org/10.1016/j.taap.2014.10.003>
3. Alghareeb, S. A., Alfhili, M. A., Fatima, S. (2023) Molecular mechanisms and pathophysiological significance of eryptosis. Int. J. Mol. Sci. 24, 5079. <https://doi.org/10.3390/ijms24065079>
4. Amen, F., Machin, A., Tourińo, C. et al. (2017) N-acetylcysteine improves the quality of red blood cells stored for transfusion. Arch. Biochem. Biophys. 621, 31-37. <https://doi.org/10.1016/j.abb.2017.02.012>
5. Anderson, H. L., Brodsky, I. E., Mangalmurti, N. S. (2018) The evolving erythrocyte: red blood cells as modulators of innate immunity. J. Immunol. 201, 1343-1351. <https://doi.org/10.4049/jimmunol.1800565>
6. Ashraf, M. I., Ebner, M., Wallner, C. et al. (2014) A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun. Signal. 12, 6. <https://doi.org/10.1186/1478-811X-12-6>
7. Attanasio, P., Bissinger, R., Haverkamp, W. et al. (2015) Enhanced suicidal erythrocyte death in acute cardiac failure. Eur. J. Clin. Invest. 45, 1316-1324. <https://doi.org/10.1111/eci.12555>
8. Attanzio, A., Frazzitta, A., Cilla, A. et al. (2019) 7-keto-cholesterol and cholestan-3beta, 5alpha, 6beta-triol induce eryptosis through distinct pathways leading to NADPH oxidase and nitric oxide synthase activation. Cell. Physiol. Biochem. 53, 933-947.
9. Azarov, I., Huang, K. T., Basu, S. et al. (2005) Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J. Biol. Chem. 280, 39024-39032. <https://doi.org/10.1074/jbc.M509045200>
10. Bettiol, A., Galora, S., Argento, F. R. et al. (2022) Erythrocyte oxidative stress and thrombosis. Expert Rev. Mol. Med. 24, e31. <https://doi.org/10.1017/erm.2022.25>
11. Bissinger, R., Artunc, F., Qadri, S. M. et al. (2016a) Reduced erythrocyte survival in uremic patients under hemodialysis or peritoneal dialysis. Kidney Blood Press. Res. 41, 966-977. <https://doi.org/10.1159/000452600>
12. Bissinger, R., Bhuyan, A. A. M., Qadri, S. M. et al. (2019) Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J. 286, 826-854. <https://doi.org/10.1111/febs.14606>
13. Bissinger, R., Kempe-Teufel, D. S., Honisch, S. et al. (2016b) Stimulated suicidal erythrocyte death in arteritis. Cell. Physiol. Biochem. 39, 1068-1077. <https://doi.org/10.1159/000447814>
14. Calderón-Salinas, J. V., Muńoz-Reyes, E. G., Guerrero-Romero, J. F. et al. (2011) Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol. Cell. Biochem. 357, 171-179. <https://doi.org/10.1007/s11010-011-0887-1>
15. Chang, C. F., Goods, B. A., Askenase, M. H. et al. (2018) Erythrocyte efferocytosis modulates macrophages towards recovery after intracerebral hemorrhage. J. Clin. Invest. 128, 607-624. <https://doi.org/10.1172/JCI95612>
16. Checa, J., Aran, J. M. (2020) Reactive oxygen species: drivers of physiological and pathological processes. J. Inflamm. Res. 13, 1057-1073. <https://doi.org/10.2147/JIR.S275595>
17. Çimen, M. Y. B. (2008) Free radical metabolism in human erythrocytes. Clin. Chim. Acta 390, 1-11. <https://doi.org/10.1016/j.cca.2007.12.025>
18. Corcoran, A., Cotter, T. G. (2013) Redox regulation of protein kinases. FEBS J. 280, 1944-1965. <https://doi.org/10.1111/febs.12224>
19. Cortese-Krott, M. M. (2023) The reactive species interactome in red blood cells: oxidants, antioxidants, and molecular targets. Antioxidants (Basel) 12, 1736. <https://doi.org/10.3390/antiox12091736>
20. Cosentino-Gomes, D., Rocco-Machado, N., Meyer-Fernandes, J. R. (2012) Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci. 13, 10697-10721. <https://doi.org/10.3390/ijms130910697>
21. Dias, G. F., Bonan, N. B., Steiner, T. M. et al. (2018) Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins (Basel) 10, 280. <https://doi.org/10.3390/toxins10070280>
22. Diederich, L., Suvorava, T., Sansone, R. et al. (2018) On the effects of reactive oxygen species and nitric oxide on red blood cell deformability. Front. Physiol. 9, 332. <https://doi.org/10.3389/fphys.2018.00332>
23. Dreischer, P., Duszenko, M., Stein, J. et al. (2022) Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells 11, 503. <https://doi.org/10.3390/cells11030503>
24. du Plooy, J. N., Bester, J., Pretorius, E. (2018) Eryptosis in haemochromatosis: implications for rheology. Clin. Hemo­rheol. Microcirc. 69, 457-469. <https://doi.org/10.3233/CH-170325>
25. Duhé, R. J. (2013) Redox regulation of Janus kinase: the elephant in the room. JAKSTAT 2, e26141.
26. Dumitru, C. A., Zhang, Y., Li, X. et al. (2007) Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid. Redox Signal. 9, 1535-1540. <https://doi.org/10.1089/ars.2007.1692>
27. Föller, M., Lang, F. (2020) Ion transport in eryptosis, the suicidal death of erythrocytes. Front. Cell Dev. Biol. 8, 597. <https://doi.org/10.3389/fcell.2020.00597>
28. Franco, R., Navarro, G., Martínez-Pinilla, E. (2019) Antioxidant defense mechanisms in erythrocytes and in the central nervous system. Antioxidants (Basel) 8, 46. <https://doi.org/10.3390/antiox8020046>
29. Gajecki, D., Gawryś, J., Szahidewicz-Krupska, E. et al. (2022) Role of erythrocytes in nitric oxide metabolism and paracrine regulation of endothelial function. Antioxidants (Basel) 11, 943. <https://doi.org/10.3390/antiox11050943>
30. Galluzzi, L., Kepp, O., Hett, E. et al. (2023) Immunogenic cell death in cancer: concept and therapeutic implications. J. Transl. Med. 21, 162. <https://doi.org/10.1186/s12967-023-04017-6>
31. Galluzzi, L., Vitale, I., Aaronson, S. A. et al. (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486-541. <https://doi.org/10.1038/s41418-017-0012-4>
32. George, A., Pushkaran, S., Konstantinidis, D. G. et al. (2013) Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood 121, 2099-2107. <https://doi.org/10.1182/blood-2012-07-441188>
33. Giorgi, C., Marchi, S., Simoes, I. C. M. et al. (2018) Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell Mol. Biol. 340, 209-344. <https://doi.org/10.1016/bs.ircmb.2018.05.006>
34. Gwozdzinski, K., Pieniazek, A., Gwozdzinski, L. (2021) Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid. Med. Cell. Longev. 2021, 6639199. <https://doi.org/10.1155/2021/6639199>
35. Hazegh, K., Fang, F., Kelly, K. et al. (2022) Erythrocyte mitogen-activated protein kinases mediate hemolytic events under osmotic and oxidative stress and in hemolytic diseases. Cell. Signal. 99, 110450. <https://doi.org/10.1016/j.cellsig.2022.110450>
36. Hernández, G., Villanueva-Ibarra, C. A., Maldonado-Vega, M. et al. (2019) Participation of phospholipase-A(2) and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol. Appl. Pharmacol. 371, 12-19. <https://doi.org/10.1016/j.taap.2019.03.025>
37. Heusch, P., Canton, M., Aker, S. et al. (2010) The contribution of reactive oxygen species and p38 mitogen-activated protein kinase to myofilament oxidation and progression of heart failure in rabbits. Br. J. Pharmacol. 160, 1408-1416. <https://doi.org/10.1111/j.1476-5381.2010.00793.x>
38. Hsu, S. K., Chang, W. T., Lin, I. L. et al. (2020) The role of necroptosis in ROS-mediated cancer therapies and its promising applications. Cancers (Basel) 12, 2185. <https://doi.org/10.3390/cancers12082185>
39. Jeney, V. (2018) Pro-inflammatory actions of red blood cell-derived DAMPs. Exp. Suppl. 108, 211-233.
40. Jiang, P., Bian, M., Ma, W. et al. (2016) Eryptosis as an underlying mechanism in systemic lupus erythematosus-related anemia. Cell. Physiol. Biochem. 40, 1391-1400. <https://doi.org/10.1159/000453191>
41. Kempe-Teufel, D. S., Bissinger, R., Qadri, S. M. et al. (2018) Cellular markers of eryptosis are altered in type 2 diabetes. Clin. Chem. Lab. Med. 56, e177-e180. <https://doi.org/10.1515/cclm-2017-1058>
42. Lam, L. K. M., Murphy, S., Kokkinaki, D. et al. (2021) DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 13, eabj1008. <https://doi.org/10.1126/scitranslmed.abj1008>
43. Lane, N. (2020) How energy flow shapes cell evolution. Curr. Biol. 30, R471-R476. <https://doi.org/10.1016/j.cub.2020.03.055>
44. Lang, E., Bissinger, R., Gulbins, E. et al. (2015) Ceramide in the regulation of eryptosis, the suicidal erythrocyte death. Apoptosis 20, 758-767. <https://doi.org/10.1007/s10495-015-1094-4>
45. Lang, E., Lang, F. (2015a) Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin. Cell Dev. Biol. 39, 35-42. <https://doi.org/10.1016/j.semcdb.2015.01.009>
46. Lang, E., Lang, F. (2015b) Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. Biomed. Res. Int. 2015, 513518. <https://doi.org/10.1155/2015/513518>
47. Lang, E., Qadri, S. M., Lang, F. (2012) Killing me softly - suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 44, 1236-1243. <https://doi.org/10.1016/j.biocel.2012.04.019>
48. Lang, K. S., Roll, B., Myssina, S. et al. (2002) Enhanced erythrocyte apoptosis in sickle cell anemia, thalassemia and glucose-6-phosphate dehydrogenase deficiency. Cell. Physiol. Biochem. 12, 365-372. <https://doi.org/10.1159/000067907>
49. LaRocca, T. J., Sosunov, S. A., Shakerley, N. L. et al. (2016) Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J. Biol. Chem. 291, 13753-13761. <https://doi.org/10.1074/jbc.M116.716027>
50. LaRocca, T. J., Stivison, E. A., Hod, E. A. et al. (2014) Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 5, e012510-1e012514. <https://doi.org/10.1128/mBio.01251-14>
51. LaRocca, T. J., Stivison, E. A., Mal-Sarkar, T. et al. (2015) CD59 signaling and membrane pores drive Syk-dependent erythrocyte necroptosis. Cell Death Dis. 6, e1773. <https://doi.org/10.1038/cddis.2015.135>
52. Lennicke, C., Cochemé, H. M. (2021) Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691-3707. <https://doi.org/10.1016/j.molcel.2021.08.018>
53. Li, H., Tu, H., Wang, Y. et al. (2012) Vitamin C in mouse and human red blood cells: an HPLC assay. Anal. Biochem. 426, 109-117. <https://doi.org/10.1016/j.ab.2012.04.014>
54. Li, P. L., Zhang, Y. (2013) Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb. Exp. Pharmacol. 216, 171-197. <https://doi.org/10.1007/978-3-7091-1511-4_9>
55. Liu, C., Zhao, W., Christ, G. J. et al. (2013) Nitric oxide scavenging by red cell microparticles. Free Radic. Biol. Med. 65, 1164-1173. <https://doi.org/10.1016/j.freeradbiomed.2013.09.002>
56. Liu, J. W., Supandi, F., Dhillon, S. K. (2022) Ferroptosis-related long noncoding RNA signature predicts prognosis of clear cell renal carcinoma. Folia Biol. (Praha) 68, 1-15. <https://doi.org/10.14712/fb2022068010001>
57. Lupescu, A., Bissinger, R., Goebel, T. et al. (2015) Enhanced suicidal erythrocyte death contributing to anemia in the elderly. Cell. Physiol. Biochem. 36, 773-783. <https://doi.org/10.1159/000430137>
58. Lux, S. E. (2016) Anatomy of the red cell membrane skeleton: unanswered questions. Blood 127, 187-199. <https://doi.org/10.1182/blood-2014-12-512772>
59. Mahdi, A., Cortese-Krott, M. M., Kelm, M. et al. (2021) Novel perspectives on redox signaling in red blood cells and platelets in cardiovascular disease. Free Radic. Biol. Med. 168, 95-109. <https://doi.org/10.1016/j.freeradbiomed.2021.03.020>
60. Mailloux, R. J. (2020) An update on mitochondrial reactive oxygen species production. Antioxidants (Basel) 9, 472. <https://doi.org/10.3390/antiox9060472>
61. Matarrese, P., Straface, E., Pietraforte, D. et al. (2005) Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 19, 416-418. <https://doi.org/10.1096/fj.04-2450fje>
62. Maurya, P. K., Kumar, P., Chandra, P. (2015) Biomarkers of oxidative stress in erythrocytes as a function of human age. World J. Methodol. 5, 216-222. <https://doi.org/10.5662/wjm.v5.i4.216>
63. McCaig, W. D., Hodges, A. L., Deragon, M. A. et al. (2019) Storage primes erythrocytes for necroptosis and clearance. Cell. Physiol. Biochem. 53, 496-507.
64. Mei, C., Peng, F., Yin, W. et al. (2022) Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 323, G9-G20. <https://doi.org/10.1152/ajpgi.00050.2020>
65. Mendonça, R., Silveira, A. A., Conran, N. (2016) Red cell DAMPs and inflammation. Inflamm. Res. 65, 665-678. <https://doi.org/10.1007/s00011-016-0955-9>
66. Milkovic, L., Cipak Gasparovic, A., Cindric, M. et al. (2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells 8, 793. <https://doi.org/10.3390/cells8080793>
67. Minton, K. (2021) Red blood cells join the ranks as immune sentinels. Nat. Rev. Immunol. 21, 760-761. <https://doi.org/10.1038/s41577-021-00648-2>
68. Mohanty, J., Nagababu, E., Rifkind, J. (2014) Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 5, 84. <https://doi.org/10.3389/fphys.2014.00084>
69. Möller, M. N., Orrico, F., Villar, S. F. et al. (2023) Oxidants and antioxidants in the redox biochemistry of human red blood cells. ACS Omega 8, 147-168. <https://doi.org/10.1021/acsomega.2c06768>
70. Moumni, I., Khalfaoui, K., Safra, I. et al. (2020) Eryptosis and circulating blood cells microparticules in sickle cell diseases. Eur. J. Public Health 30, V958. <https://doi.org/10.1093/eurpub/ckaa166.1147>
71. Murao, A., Aziz, M., Wang, H. et al. (2021) Release mechanisms of major DAMPs. Apoptosis 26, 152-162. <https://doi.org/10.1007/s10495-021-01663-3>
72. Nader, E., Romana, M., Guillot, N. et al. (2020) Association between nitric oxide, oxidative stress, eryptosis, red blood cell microparticles, and vascular function in sickle cell anemia. Front. Immunol. 11, 551441. <https://doi.org/10.3389/fimmu.2020.551441>
73. Nakano, H., Murai, S., Moriwaki, K. (2022) Regulation of the release of damage-associated molecular patterns from ne­croptotic cells. Biochem. J. 479, 677-685. <https://doi.org/10.1042/BCJ20210604>
74. Nicolay, J. P., Liebig, G., Niemoeller, O. M. et al. (2008) Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Arch. 456, 293-305. <https://doi.org/10.1007/s00424-007-0393-1>
75. Niki, E. (2021) Lipid oxidation that is, and is not, inhibited by vitamin E: consideration about physiological functions of vitamin E. Free Radic Biol. Med. 176, 1-15. <https://doi.org/10.1016/j.freeradbiomed.2021.09.001>
76. Orrico, F., Laurance, S., Lopez, A. C. et al. (2023) Oxidative stress in healthy and pathological red blood cells. Biomolecules 13, 1262. <https://doi.org/10.3390/biom13081262>
77. Pandey, K. B., Rizvi, S. I. (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid. Med. Cell. Longev. 3, 2-12. <https://doi.org/10.4161/oxim.3.1.10476>
78. Perrone, S., Lembo, C., Giordano, M. et al. (2023) Molecular mechanisms of oxidative stress-related neonatal jaundice. J. Biochem. Mol. Toxicol. 37, e23349. <https://doi.org/10.1002/jbt.23349>
79. Pinzón-Díaz, C. E., Calderón-Salinas, J. V., Rosas-Flores, M. M. et al. (2018) Eryptosis and oxidative damage in hypertensive and dyslipidemic patients. Mol. Cell. Biochem. 440, 105-113. <https://doi.org/10.1007/s11010-017-3159-x>
80. Premont, R. T., Reynolds, J. D., Zhang, R. et al. (2020) Role of nitric oxide carried by hemoglobin in cardiovascular physiology: developments on a three-gas respiratory cycle. Circ. Res. 126, 129-158. <https://doi.org/10.1161/CIRCRESAHA.119.315626>
81. Pretorius, E., du Plooy, J. N., Bester, J. (2016) A comprehensive review on eryptosis. Cell. Physiol. Biochem. 39, 1977-2000. <https://doi.org/10.1159/000447895>
82. Qadri, S. M., Bissinger, R., Solh, Z. et al. (2017) Eryptosis in health and disease: a paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev. 31, 349-361. <https://doi.org/10.1016/j.blre.2017.06.001>
83. Repsold, L., Joubert, A. M. (2018) Eryptosis: an erythrocyte’s suicidal type of cell death. Biomed Res. Int. 2018, 9405617. <https://doi.org/10.1155/2018/9405617>
84. Santos, A. L., Sinha, S., Lindner, A. B. (2018) The good, the bad, and the ugly of ROS: new insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms. Oxid. Med. Cell. Longev. 2018, 1941285.
85. Schirrmeister, B. E., de Vos, J. M., Antonelli, A. et al. (2013) Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl. Acad. Sci. U. S. A. 110, 1791-1796. <https://doi.org/10.1073/pnas.1209927110>
86. Scovino, A. M., Totino, P. R. R., Morrot, A. (2022) Eryptosis as a new insight in malaria pathogenesis. Front. Immunol. 13, 855795. <https://doi.org/10.3389/fimmu.2022.855795>
87. Seo, J., Kim, Y., Ji, S. et al. (2023) O-GlcNAcylation of RIPK1 rescues red blood cells from necroptosis. Front. Immunol. 14, 1160490. <https://doi.org/10.3389/fimmu.2023.1160490>
88. Shen, S., Shao, Y., Li, C. (2023) Different types of cell death and their shift in shaping disease. Cell Death Discov. 9, 284. <https://doi.org/10.1038/s41420-023-01581-0>
89. Shields, H. J., Traa, A., Van Raamsdonk, J. M. (2021) Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 9, 628157. <https://doi.org/10.3389/fcell.2021.628157>
90. Steinberg, S. F. (2015) Mechanisms for redox-regulation of protein kinase C. Front. Pharmacol. 6, 128. <https://doi.org/10.3389/fphar.2015.00128>
91. Szondy, Z., Sarang, Z., Kiss, B. et al. (2017) Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance. Front. Immunol. 8, 909. <https://doi.org/10.3389/fimmu.2017.00909>
92. Thannickal, V. J. (2009) Oxygen in the evolution of complex life and the price we pay. Am. J. Respir. Cell Mol. Biol. 40, 507-510. <https://doi.org/10.1165/rcmb.2008-0360PS>
93. Tkachenko, A. (2023) Apoptosis and eryptosis: similarities and differences. Apoptosis Online ahead of print. <https://doi.org/10.1007/s10495-023-01915-4>
94. Tkachenko, A., Onishchenko, A. (2023) Casein kinase 1α mediates eryptosis: a review. Apoptosis 28, 1-19. <https://doi.org/10.1007/s10495-022-01776-3>
95. Tkachenko, A., Onishchenko, A., Myasoedov, V. et al. (2023) Assessing regulated cell death modalities as an efficient tool for in vitro nanotoxicity screening: a review. Nanotoxicology 17, 1-31. <https://doi.org/10.1080/17435390.2023.2203239>
96. Truong, T. H., Carroll, K. S. (2013) Redox regulation of protein kinases. Crit. Rev. Biochem. Mol. Biol. 48, 332-356. <https://doi.org/10.3109/10409238.2013.790873>
97. Tsamesidis, I., Pério, P., Pantaleo, A. et al. (2020) Oxidation of erythrocytes enhance the production of reactive species in the presence of artemisinins. Int. J. Mol. Sci. 21, 4799. <https://doi.org/10.3390/ijms21134799>
98. Turpin, C., Meilhac, O., Bourdon, E. et al. (2022) Methodologies and tools to shed light on erythrophagocytosis. Biochimie 202, 166-179. <https://doi.org/10.1016/j.biochi.2022.07.017>
99. Vardar Acar, N., Özgül, R. K. (2023) The bridge between cell survival and cell death: reactive oxygen species-mediated cellular stress. EXCLI J. 22, 520-555.
100. Villalpando-Rodriguez, G. E., Gibson, S. B. (2021) Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell. Longev. 2021, 9912436. <https://doi.org/10.1155/2021/9912436>
101. Webb, A. J., Milsom, A. B., Rathod, K. S. et al. (2008) Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ. Res. 103, 957-964. <https://doi.org/10.1161/CIRCRESAHA.108.175810>
102. Ye, K., Chen, Z., Xu, Y. (2023) The double-edged functions of necroptosis. Cell Death Dis. 14, 163. <https://doi.org/10.1038/s41419-023-05691-6>
103. Zeng, J., Huang, Y. Y., Xu, X. M. et al. (2020) Both caspase and calpain are involved in endoplasmic reticulum-targeted BNIP3-induced cell death. Folia Biol. (Praha) 66, 60-66. <https://doi.org/10.14712/fb2020066020060>
104. Zimorski, V., Mentel, M., Tielens, A. G. M. et al. (2019) Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 140, 279-294. <https://doi.org/10.1016/j.freeradbiomed.2019.03.030>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Archive