Fol. Biol. 2023, 69, 91-98

https://doi.org/10.14712/fb2023069030091

Radiation-Induced Lymphopoenia and Treatment Outcome in Hereditary Breast Cancer Patients

Soňa Argalácsová, Ľudmila Křížová, Martin Matějů, Dominika Svobodová, Michal Vočka

Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic

Received November 2023
Accepted November 2023

References

1. Abravan, A., Faivre-Finn, C., Kennedy, J. et al. (2020) Radiotherapy-related lymphopenia affects overall survival in patients with lung cancer. J. Thorac. Oncol. Surg. 15, 1624-1635. <https://doi.org/10.1016/j.jtho.2020.06.008>
2. Bergom, C., West, C. M., Higginson, D. S. et al. (2019) The implications of genetic testing on radiation therapy decisions: a guide for radiation oncologists. Int. J. Radiat. Oncol. Biol. Phys. 105, 698-712. <https://doi.org/10.1016/j.ijrobp.2019.07.026>
3. Chapman, B. V., Liu, D., Shen, Y. et al. (2022) Breast radiation therapy-related treatment outcomes in patients with or without germline mutations on multigene panel testing. Int. J. Radiat. Oncol. Biol. Phys. 112, 437-444. <https://doi.org/10.1016/j.ijrobp.2021.09.026>
4. Chen, F., Yu, H., Zhang, H. et al. (2021) Risk factors for radiation-induced lymphopenia in patients with breast cancer receiving adjuvant radiotherapy. Ann. Transl. Med. 9, 1288. <https://doi.org/10.21037/atm-21-2150>
5. Damen, P. J. J., Kroese, T. E., Van Hillegersberg, R. et al. (2021) The influence of severe radiation-induced lymphopenia on overall survival in solid tumors: a systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 111, 936-948. <https://doi.org/10.1016/j.ijrobp.2021.07.1695>
6. De Talhouet, S., Peron, J., Vuilleumier, A. et al. (2020) Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci. Rep. 10, 7073. <https://doi.org/10.1038/s41598-020-63759-1>
7. Desmond, A., Kurian, A. W., Gabree, M. et al. (2015) Clinical actionability of multigene panel testing for hereditary breast and ovarian cancer risk assessment. JAMA Oncol. 1, 943-951. <https://doi.org/10.1001/jamaoncol.2015.2690>
8. Edge, S., Byrd, D. R., Compton, C. C. et al. (2010) AJCC Cancer Staging Handbook: From the AJCC Cancer Staging Manual, 7th ed. Springer-Verlag, Berlin/Heidelberg.
9. Fan, C., Zhang, J., Ouyang, T. et al. (2018) RAD50 germline mutations are associated with poor survival in BRCA1/2-negative breast cancer patients. Int. J. Cancer 143, 1935-1942. <https://doi.org/10.1002/ijc.31579>
10. Ferlay, J., Colombet, M., Soerjomataram, I. et al. (2021) Cancer statistics for the year 2020: an overview. Int. J. Cancer 149, 778-789. <https://doi.org/10.1002/ijc.33588>
11. Gonçalves, D., Pires, A. S., Marques, I. A., Gomes, I. et al. (2022) An overview on radiation sensitivity in hereditary breast and ovarian cancer syndrome. Cancers (Basel) 14, 3254. <https://doi.org/10.3390/cancers14133254>
12. Kleibl, Z., Kristensen, V. N. (2016) Women at high risk of breast cancer: molecular characteristics, clinical presentation and management. Breast 28, 136-144. <https://doi.org/10.1016/j.breast.2016.05.006>
13. Kleiblova, P., Stolarova, L., Krizova, K. et al. (2019) Identification of deleterious germline CHEK2 mutations and their association with breast and ovarian cancer. Int. J. Cancer 145, 1782-1797. <https://doi.org/10.1002/ijc.32385>
14. Kral, J., Jelinkova, S., Zemankova, P. et al. (2023) Germline multigene panel testing of patients with endometrial cancer. Oncol. Lett. 25, 216. <https://doi.org/10.3892/ol.2023.13802>
15. Lazzari, G., Buono, G., Zannino, B. et al. (2021) Breast cancer adjuvant radiotherapy in BRCA1/2, TP53, ATM genes mutations: are there solved issues? Breast Cancer (Dove Med. Press) 13, 299-310.
16. Lhotova, K., Stolarova, L., Zemankova, P. et al. (2020) Multigene panel germline testing of 1333 Czech patients with ovarian cancer. Cancers (Basel) 12, 956. <https://doi.org/10.3390/cancers12040956>
17. Ni, W., Xiao, Z., Zhou, Z. et al. (2022) Severe radiation-induced lymphopenia during postoperative radiotherapy or chemoradiotherapy has poor prognosis in patients with stage IIB-III after radical esophagectomy: a post hoc analysis of a randomized controlled trial. Front. Oncol. 12, 936684. <https://doi.org/10.3389/fonc.2022.936684>
18. Pierce, L. J., Haffty, B. G. (2011) Radiotherapy in the treatment of hereditary breast cancer. Semin. Radiat. Oncol. 21, 43-50. <https://doi.org/10.1016/j.semradonc.2010.08.008>
19. Pollard, J. M., Gatti, R. A. (2009) Clinical radiation sensitivity with DNA repair disorders: an overview. Int. J. Radiat. Oncol. Biol. Phys. 74, 1323-1331. <https://doi.org/10.1016/j.ijrobp.2009.02.057>
20. Reiner, A. S., Robson, M. E., Mellemkjćr, L. et al. (2020) Radiation treatment, ATM, BRCA1/2, and CHEK2*1100delC pathogenic variants and risk of contralateral breast cancer. J. Natl. Cancer Inst. 112, 1275-1279. <https://doi.org/10.1093/jnci/djaa031>
21. Soukupová, J., Zemánková, Z., Kleiblová, P. et al. (2016) CZECANCA: CZEch CAncer paNel for Clinical Application – design and optimization of the targeted sequencing panel for the identification of cancer susceptibility in high-risk individuals from the Czech Republic. Klin. Onkol. 29, S46-S54. (in Czech) <https://doi.org/10.14735/amko2016S46>
22. Soukupova, J., Zemankova, P., Lhotova, K. et al. (2018) Validation of CZECANCA (CZEch CAncer paNel for Clinical Application) for targeted NGS-based analysis of hereditary cancer syndromes. PLoS One 13, e0195761. <https://doi.org/10.1371/journal.pone.0195761>
23. Sun, G. Y., Wang, S. L., Song, Y. W. et al. (2020) Radiation-induced lymphopenia predicts poorer prognosis in patients with breast cancer: a post hoc analysis of a randomized controlled trial of postmastectomy hypofractionated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 108, 277-285. <https://doi.org/10.1016/j.ijrobp.2020.02.633>
24. Tung, N. M., Boughey, J. C., Pierce, L. J. et al. (2020) Management of hereditary breast cancer: American Society of Clinical Oncology, American Society for Radiation Oncology, and Society of Surgical Oncology Guideline. J. Clin. Oncol. 38, 2080-2106. <https://doi.org/10.1200/JCO.20.00299>
25. Venkatesulu, B. P., Mallick, S., Lin, S. H. et al. (2018) A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit. Rev. Oncol. Hematol. 123, 42-51. <https://doi.org/10.1016/j.critrevonc.2018.01.003>
26. Vocka, M., Zimovjanova, M., Bielcikova, Z. et al. (2019) Estrogen receptor status oppositely modifies breast cancer prognosis in BRCA1/BRCA2 mutation carriers versus non-carriers. Cancers (Basel) 11, 738. <https://doi.org/10.3390/cancers11060738>
27. Xie, X., Gong, S., Jin, H. et al. (2020) Radiation-induced lymphopenia correlates with survival in nasopharyngeal carcinoma: impact of treatment modality and the baseline lymphocyte count. Radiat. Oncol. 15, 65. <https://doi.org/10.1186/s13014-020-01494-7>
front cover

ISSN 0015-5500 (Print) ISSN 2533-7602 (Online)

Archive